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Phase separation under shear in two-dimensional binary fluids

A. J. Wagner* and J. M. Yeomans
Department of Physics, Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 14 October 1998!

We use lattice Boltzmann simulations to study the effect of shear on the phase ordering of a two-dimensional
binary fluid. The shear is imposed by generalizing the lattice Boltzmann algorithm to include Lees-Edwards
boundary conditions. We show how the interplay between the ordering effects of the spinodal decomposition
and the disordering tendencies of the shear, which depends on the shear rate and the fluid viscosity, can lead
to a state of dynamic equilibrium where domains are continually broken up and reformed.
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I. INTRODUCTION

We present numerical results for the effect of shear fl
on the spinodal decomposition of a two-dimensional bin
fluid using lattice Boltzmann simulations. We show how t
lattice Boltzmann algorithm can be generalized to allow
introduction of the Lees-Edwards boundary conditio
which are commonly used in molecular dynamics simu
tions to impose a shear flow without introducing walls. R
sults are presented showing how the competition between
ordering effects of the free energy and the disordering effe
of the shear influences the spinodal decomposition and p
ordering of the fluid. For a recent review see Onuki@1#.

When a binary fluid consisting of an equal amount of tw
components,A andB say, is rapidly cooled below the critica
temperature it phase separates into anA-rich and aB-rich
phase. Once well-defined domains of each phase are for
the typical domain size grows according to a power law

R~ t !;ta, ~1!

where a is the growth exponent@2#. a depends on the
growth mechanism, which is dictated by the surface tens
viscosity, and diffusivity of the fluid, and the time elaps
after the quench. In two-dimensional systems diffus
Lifshitz-Slyozov growth givesa5 1

3 while hydrodynamics
can lead to faster growth witha5 2

3 .
The most obvious effect of shear flow on the doma

growth is that the growing domains are elongated in the
rection of the flow, leading to an anisotropic morpholog
Experiments in three dimensions have shown that a str
like phase of thin domains oriented parallel to the shear
be formed in strong shear@3#. Such domains, which would
normally be expected to be unstable due to the Rayle
instability, appear to be stabilized by the shear, although v
recent experiments show that they can eventually break u
strong shear@4#.

This apparent stabilization suggests the possibility o
dynamic equilibrium when stretching and breaking of t
domains as the result of the shear is balanced by their gro
due to the thermodynamic driving force and to the coal
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cence of the domains, which can itself be driven by t
shear. This was proposed by Ohta, Nozaki, and Doi@5# on
the basis of two-dimensional simulations using a cell d
namic approach. These simulations, however, did not incl
hydrodynamics.

Simulations of phase separation under shear which
clude hydrodynamics are limited. Olson and Rothman p
formed early work using lattice gas cellular automata in t
and three dimensions and were able to see the anisotrop
the growth@6,7#. Wu et al. undertook Langevin simulation
in two and three dimensions and report the eventual form
tion of a string phase in three dimensions@8#. Padilla and
Toxvaerd performed molecular dynamics simulations on
two-dimensional Lennard-Jones system, again pointing
the anisotropic nature of the domain growth@9#. In the simu-
lations a peak was seen in the excess shear viscosity
function of time corresponding to the increase in the leng
of interfaces in the system. However, there seems to be
evidence for a shear-induced dynamic equilibrium.

Here we simulate phase separation under shear usi
lattice Boltzmann scheme in the same spirit as the mo
introduced by Orlandini and co-workers, which impos
phase separation by defining the fluid equilibrium as
minimum of an input free energy@10,11#. This method has
been very successful in obtaining results for phase separa
in the absence of shear@12#. A particular advantage of the
approach is that the fluid viscosity and diffusivity can
tuned, and this has allowed us to compare simulations
parameter values where diffusive or hydrodynamic ph
separation dominates. We find either phases striped in
shear direction, or a dynamic equilibrium where the leng
scales remain approximately constant in time, depending
the relative strengths of the shear and the ordering.

The lattice Boltzmann approach is described in Sec.
Because this is a lattice rather than particulate simula
method, it is not immediately obvious how to define Lee
Edwards shear boundary conditions. An approach for do
this is given in Sec. III. In particular, it is necessary to ge
eralize the normal definition of the lattice Boltzmann eq
librium distribution. In Sec. IV we define suitable measur
to characterize the anisotropic morphology of the spino
decomposition patterns when shear is applied. The resul
our simulations are contained in Sec. V, where the effec
shear is compared for different fluid viscosities. Section
summarizes the results and discusses outstanding quest

e.,
4366 ©1999 The American Physical Society
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II. THE LATTICE BOLTZMANN APPROACH

The starting point for lattice Boltzmann simulations@13#
is the evolution equation, discrete in space and time, for a
of distribution functionsf i , each associated with a velocit
vector vi . For the sake of simplicity we consider a sing
relaxation time, the so-called Bhatnagar, Gross, and Kr
~BGK! approximation@14#. The evolution equation for the
$ f i% is

f i~x1viDt,t1Dt !2 f i~x,t !5
Dt

t1
~ f i

02 f i !, ~2!

wherex is a lattice point,Dt is the time step, andviDt is
normally constrained to be a lattice vector. The relaxat
time is t1 and f i

0 is the equilibrium distribution. For a two
component system a second, equivalent equation is
needed,

gi~x1viDt,t1Dt !2gi~x,t !5
Dt

t2
~gi

02gi !. ~3!

Physical quantities are defined as moments of the distr
tion functions. To model the isothermal flow of a bina
mixture of componentsA andB, we choose

(
i

f i5n, (
i

f ivi5nu, (
i

gi5w, ~4!

wheren is the total density field,u is the velocity field, and
w is the field corresponding to the difference in the density
componentsA andB.

We require mass conservation for both components
momentum conservation for the bulk. This is equivalent
constraining the equilibrium distributions to obey

(
i

f i
05n, (

i
gi

05w, (
i

f i
0vi5nu. ~5!

We also need to define higher-order moments of the e
librium densities. The choice for these moments is within
free energy lattice Boltzmann scheme used here@10,11#,

(
i

f i
0v iav ib5Pab1nuaub , ~6!

(
i

gi
0v ia5wua , ~7!

(
i

gi
0v iav ib5Gmdab1wuaub , ~8!

wherePab is the pressure tensor,G is a mobility parameter,
m is the chemical potential for the density difference, andd
is the Kronecker delta. The physical motivation for the
constraints is twofold; first to ensure the correct form of t
macroscopic equations of motion and secondly to reprod
the correct thermodynamics of the binary mixture in equil
rium as discussed in more detail below.

Taylor expanding the evolution equations~2! and ~3! to
second order in the derivatives gives the macroscopic e
tions of motion for the binary fluid@15#. These are the con
tinuity equations for the total density,

] tn1]anua50, ~9!
et

k

n

so

u-

f

d
o

i-
e

e

ce
-

a-

a convection-diffusion equation governing the evolution
the density difference

] tw1]a~wua!5v2FG¹2m2]bS w

n
]aPabD G , ~10!

and, in the incompressible limit, the incompressible Navi
Stokes equations for a nonideal system,

n] tua1nub]bua52]bPab1
nv1

3
¹2ua1O~]3!, ~11!

where v1,25t1,22Dt/2 and the viscosity is given byn
5nv1/3.

The thermodynamic fields entering the simulation are
pressure tensor and the chemical potential which follow fr
the free energy of the system. We consider the free energ
a simple binary fluid.A-A andB-B interactions are zero, bu
there is anA-B repulsionlnAnB wherenA and nB are the
number densities ofA andB particles, respectively, andl is
a parameter describing the interaction strength. This sys
can be described by the Landau free energy functional

C5E dr H c~w,n,T!1
k

2
~“w!2J , ~12!

whereT is the temperature andk is a measure of the exces
interface free energy~surface tension!. The free energy den
sity of the homogeneous system is@16#

c~w,n,T!5
ln

4 S 12
w2

n2 D 2Tn1
T

2
~n1w!lnS n1w

2 D
1

T

2
~n2w!lnS n2w

2 D . ~13!

For temperatures greater than a critical temperatureTc
5l/2 the system remains in a single phase. ForT,Tc there
is phase separation into two states withw56w0 .

From the free energy~12! we derive the local chemica
potentialm as the functional derivative of the total free e
ergy C with respect to the concentration difference fie
w(x),

m~x!5
dC

dw~x!
52

l

2

w

n
1

T

2
lnS n1w

n2w D2k¹2w. ~14!

Equilibrium corresponds tom(f,n,T)50.
The derivation of the pressure tensor is slightly more

volved and is discussed in the Appendix@17#. We obtain

Pab5~n]nc1w]wc2c!dab

1k~]aw]bw2 1
2 ]gw]gwdab2w]g]gw!

5@nT1wm0~x!#dab

1k~]aw]bw2 1
2 ]gw]gwdab2w]g]gw!

5@nT1wm~x!#dab1k~]aw]bw2 1
2 ]gw]gwdab!,

~15!

where the first term is the ideal gas pressure, the second
is the osmotic pressure withm05]fc, and the third term is
related to the surface tension. The osmotic pressure
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4368 PRE 59A. J. WAGNER AND J. M. YEOMANS
omitted in the original definition of the model@10,11#. The
chemical potential and pressure tensor are input to the la
Boltzmann scheme through Eqs.~6! and ~8!. In equilibrium
the simulated fluid minimizes the free energy~12!.

It remains only to define the equilibrium distributionsf i
0

and gi
0 introduced in the evolution equations~2! and ~3!.

Normally an expansion to second order in the velocities
sufficient to reproduce the constraints~5!–~8! @13#. However,
this ceases to be the case when Lees-Edwards shear b
ary conditions are introduced. In the next section we disc
how the equilibrium distribution can be defined to allow t
use of Lees-Edwards boundary conditions.

III. SHEAR BOUNDARY CONDITIONS

Possibly the easiest way to introduce shear flow in a
tice Boltzmann simulation is to include walls moving in
lattice direction. Even for a wall with neutral wetting, how
ever, phase separation is strongly enhanced at the walls
the wall effects easily dominate the phase-separation pro
for all but the largest systems. The effect of walls on ph
separation is an interesting phenomenon in its own right,
it is not the process we are interested in studying here.

The problem caused by explicit walls can be overcome
a relatively simple and efficient manner by introducing
Klein-bottle symmetry to the lattice, i.e., introducing pe
odic boundary conditions in one directionf (xsize,y)
5 f (0,y) and a Möbius-band-like boundary condition in th
other direction f (x,ysize)5 f (xsize2x,0). This is done by
forcing the fluid to have a given velocity along one line
the direction of the shear flow. In a one-component mixt
this induces a linear velocity profile. For a two-compone
mixture, however, the dynamics are influenced by
V-shaped velocity profile at the forcing line because of
nonlocal interactions. We used this algorithm to produce p
liminary results but it has no advantages over the met
derived below.

A more regular shear flow can be produced by extend
the idea of Lees-Edwards boundary conditions, widely u
in molecular dynamics@18#, to lattice Boltzmann simula-
tions. Briefly, Lees and Edwards simulated shear bound
conditions for a shear in thex direction in a simulation box
of dimensions (X,Y) by introducing periodic boundary con
ditions in they direction. Particles that left the box at th
lower boundary for position (x,y50) reappeared at the up
per boundary at position„x1ut(modX),y5Y… with a veloc-
ity that was changed byv→v1u.

To implement this idea for lattice Boltzmann simulatio
we are faced with two difficulties. First the densities a
defined on a lattice and the Lees-Edwards boundary co
tions lead to densities defined between the lattice points. S
ondly we need to impose a Galilean transformation for
densities which are streamed across the lattice.

The nonfitting of the lattice is relevant both for th
streaming and for the calculation of derivatives aty51 and
y5Y. We solve this problem by a linear interpolatio
scheme. For any density we define

f @x,y50#5@12R~ut!# f @x1I ~ut!,y5Y#

1R~ut! f @x1I ~ut!11,y5Y#, ~16!
ce

s

nd-
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where I (z) is the largest integer withI (z),z and R(z)5z
2I (z). If we pass the break in the lattice from the other si
we define similarly

f @x,y5Y11#5@12R~ut!# f @x2I ~ut!,y51#

1R~ut! f @x2I ~ut!21,y51#. ~17!

These formulas are used both for the streaming of
Galilean-transformed Boltzmann densitiesf i and for the cal-
culation of density gradients.

It is rather more difficult to see how the Galilean tran
formation should be defined. Let us consider the special c
of a two-dimensional, nine-velocity model where the velo
ties are numbered as indicated in Fig. 1. We need to perf
a Galilean transformation on the$5,2,6% and the$7,4,8% ve-
locities as these will carry mass and momentum across
boundaries. To define the transformation we demand m
andy-momentum conservation,

np[ f 51 f 21 f 65 f 581 f 281 f 68 , ~18!

an appropriate change in thex momentum,

~ f 52 f 6!2~ f 582 f 68!5npu, ~19!

and conservation of the local pressure,

Pxx
p 5(

f i

np
2 ~nv ix2npux!

2

5
1

np
2 @ f 5~np2npux!

21 f 2~npux!
21 f 6~2np2npux!

2#

5
1

np
2 @ f 58~np2npux8!21 f 28~npux8!21 f 68~2np2npux8!2#,

~20!

where the prime denotes the transformed quantities.
This system of equations can be solved to give a uni

solution for the Galilean-transformed densitiesf i8 ,

f 285 f 212~ f 52 f 6!u2npu2, ~21!

f 585 f 51S 2
3

2
f 52

1

2
f 21

1

2
f 6Du1

np

2
u2, ~22!

f 685 f 61S 2
1

2
f 51

1

2
f 21

3

2
f 6Du1

np

2
u2. ~23!

FIG. 1. Our numbering of the velocity vectors in a nine-veloc
model.
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This definition can be extended to a Galilean transforma
for all densities and, equivalently, to a transformation in d
ferent lattice directions.

In order for this transformation to make sense we need
make sure that Eq.~19! is consistent with the definition o
the equilibrium distribution,f i

0 in Eq. ~2!, i.e., that an equi-
librium distribution for a velocityu Galilean transformed by
a velocity Du is equal to the equilibrium distribution fo
velocity u1Du. It is conventional to define the equilibrium
distribution as a polynomial in second order inu. A generic
expansion is

f i
05Asn1Bsnuav ia1Csnu2

1Dsnuaubv iav ib1Gsabnv iav ib , ~24!

whereAs ,Bs ,Cs ,Ds ,Gsab are constants that have the a
solute value of the corresponding velocity vectors5uvi u as
an index. However, substituting Eq.~24! into Eq.~19! shows
that this equation is not satisfied in equilibrium. In practi
this leads to a step in theux profile at the boundary.

There is, however, noa priori reason to use a second
order expansion in the velocity for the equilibrium distrib
tion. All that is needed for a valid equilibrium distribution
that Eqs.~5!–~8! hold and that the distribution obeys th
conditions~21!–~23!.

Let Tab5Pab /n. Then, if we require

f 1
02 f 3

0

f 1
01 f 0

01 f 3
0

5ux ,
f 2

02 f 4
0

f 2
01 f 0

01 f 4
0

5uy , ~25!

f 5
01 f 6

02~ f 5
01 f 6

01 f 2
0!~Txx1uxux!50, ~26!

f 5
01 f 8

02~ f 5
01 f 8

01 f 1
0!~Tyy1uyuy!50, ~27!

f 8
01 f 7

02~ f 8
01 f 7

01 f 4
0!~Txx1uxux!50, ~28!

f 6
01 f 7

02~ f 6
01 f 7

01 f 3
0!~Tyy1uyuy!50, ~29!

Eqs.~25!–~29!, together with Eqs.~5!–~8!, are a completely
determined set of equations with the solution

f 0
05n~12Txx2ux

2!~12Tyy2uy
2!,

f 1
05 1

2 n~Txx1ux1ux
2!~12Tyy2uy

2!,

f 2
05 1

2 n~Tyy1uy1uy
2!~12Txx2ux

2!,

f 3
05 1

2 n~Txx2ux1ux
2!~12Tyy2uy

2!,

f 4
05 1

2 n~Tyy2uy1uy
2!~12Txx2ux

2!,

f 5
05 1

4 n@Txy1TxxTyy1Tyy~ux1ux
2!

1Txx~uy1uy
2!1uxuy~11ux1uy1uxuy!#,

f 6
05 1

4 n@2Txy1TxxTyy1Tyy~2ux1ux
2!

1Txx~uy1uy
2!2uxuy~12ux1uy2uxuy!#,

f 7
05 1

4 n@Txy1TxxTyy1Tyy~2ux1ux
2!

1Txx~2uy1uy
2!1uxuy~12ux2uy1uxuy!#,

f 8
05 1

4 n@2Txy1TxxTyy1Tyy~ux1ux
2!

1Txx~2uy1uy
2!2uxuy~11ux2uy2uxuy!#.
n
-

to

For this equilibrium distribution

f 5
02 f 6

0

f 5
01 f 2

01 f 6
0

5ux1
Txy

Tyy1uy1uy
2

, ~30!

which is consistent with the Galilean transformation~19!.
For a two-component system we similarly define thegi

0

using

g1
02g3

0

g1
01g0

01g3
0

5ux ,
g2

02g4
0

g2
01g0

01g4
0

5uy ~31!

and imposing

g05w2 lGm2w~ux
21uy

2!, ~32!

where l is a free parameter that can be used to impro
stability ~we choosel 51). Solving Eqs.~31! and ~32! and
~5!–~8! gives

g1
05 1

2 $~ l 212ux!Gm1~11ux2uy
2!wux%,

g2
05 1

2 $~ l 212uy!Gm1~11uy2ux
2!wuy%,

g3
05 1

2 $~ l 211ux!Gm2~12ux2uy
2!wux%,

g4
05 1

2 $~ l 211uy!Gm2~12uy2ux
2!wuy%,

g5
05 1

4 $~22 l 1ux1uy!Gm1~11ux1uy!wuxuy%,

g6
05 1

4 $~22 l 2ux1uy!Gm2~12ux1uy!wuxuy%,

g7
05 1

4 $~22 l 2ux2uy!Gm1~12ux2uy!wuxuy%,

g8
05 1

4 $~22 l 1ux2uy!Gm2~11ux2uy!wuxuy%.

The macroscopic flow equations are unaffected by the ch
of the further constraints~25!–~29! and ~31!–~32! or by the
detailed structure of the equilibrium distributions. Therefo
these alterations in the model can change the numerical
bility and the behavior of quantities like the spurious velo
ties, but they leave the evolution of the macroscopic qua
ties unaffected, at least to second order in the derivative

IV. MEASURES FOR NONISOTROPIC PATTERNS

To characterize the features of phase separation u
shear it is necessary to construct measures for the le
scales of the sheared systems which will in general be an
tropic. Measures that are based on Fourier transforms ca
be easily used for sheared systems because the system
longer periodic.

Length scales derived from derivatives do not require
riodicity. Derivatives need to be evaluated for the algorith
and are readily available. We define a tensor

dab5

(
x

]a
Dw~x,t !]b

Dw~x,t !

(
x

w2~x,t !

, ~33!

where]a
D is the symmetric discrete derivative in directiona.

Because the tensor is symmetric it can be diagonalized
give two eigenvaluesl1 ,l2 and an angleu!,
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l15
dxx1dyy

2
1A~dxx2dyy!

2

4
1dxy

2 , ~34!

l25
dxx1dyy

2
2A~dxx2dyy!

2

4
1dxy

2 , ~35!

u!5tan21S dyy

dxy2l2
D . ~36!

The two eigenvalues give two orthogonal length scales

R1
!~ t !5

1

l1~ t !Lw
, R2

!~ t !5
1

l2~ t !Lw
, ~37!

where Lw is the interface width. It appears becausedab
scales inversely with the interface width@15#. Lw , used as a
constant here, could in principle be anisotropic. That t
anisotropy is not a strong effect can be seen by compa
these length scales with scales that are explicitly indepen
of the interface width.

One such measure is related to the lengths of the in
faces in the system. The interface can be represented by
of contours. These contours consist of small line segmenlW i
and the length of the interface can be written

LI5(
i

u lW i u. ~38!

In order to extract the preferred direction of the interface
define the vector

DW 5R21S (
i

R~ lW i ! D . ~39!

The operatorR is defined by

R~xW !5uxW uS cos~2u!

sin~2u!
D , ~40!

whereu is the angle between the argument ofR and thex
axis.

DW is a vector that is zero for isotropic closed contours a
which points in the average direction of the interface
nonisotropic closed contours. Two length scales and an a
that correspond to the intuitive result for oriented rectangu
objects can be defined from these measures,

R1
° 5

XY

LI1uDW u
, R2

° 5
XY

LI2uDW u
, ~41!

u°5cos21S xŴ•DW

uDW u
D . ~42!

Thus we have defined two independent sets of measure
the structure of nonisotropic patterns that will now be used
examine spinodal decomposition under shear.

V. SIMULATION RESULTS

For all the simulations we used a total densityn52, an
interaction parameterl51.1, which corresponds to a critica
temperatureTc50.55, and a temperatureT50.5. The equi-
s
g
nt

r-
set

e

d
r
le
r

for
o

librium values of the order parameter were thenw0561.
The mobility wasG52, the relaxation time for the orde
parameter in Eq.~3! wast251, and the interface free energ
parameter wask50.002, which corresponds to an interfa
width of approximately three lattice spacings. The relaxat
parameter for the total density Eq.~2!, t1 , was varied:t1
5100 gave a high viscosity andt151 an intermediate vis-
cosity.

The shear transformationS is defined as

SS x

yD 5S x1ġty

y
D . ~43!

Shear flow applied to a system undergoing spinodal dec
position stretches the original pattern. This effect is only r
evant once the deformation caused by the flow is of the sa
order as or larger than the deformation caused by the co
ening process. This requires

ġt.1. ~44!

We therefore expect to observe the effect of the shear fl
for t.1/ġ.

To help understand the effect of shear flow on a pha
separating system let us first consider a pattern without
internal dynamics that undergoes a shear transformat
This transformation is illustrated in Fig. 2, where we st
from a frozen spinodal decomposition pattern and show s
cessive iterations of a shear transformation withġ51.

The structure develops an orientation that slowly alig
with the shear direction while the stretching increases
length of the domains along the shear. Once the width of
domains is smaller than the original width of the interfa
the system is effectively a homogeneous mixture.

This effect is known as shear-induced mixing. It can
observed in the lattice Boltzmann fluids if the stretching
fect of the shear flow is much faster than the growth of
domains via diffusion or flow. Numerically this can b
achieved by choosing a very low mobility and a high visco
ity. Phase separation is suppressed because of the m
properties of the shear flow unless the phase-separa
structure is aligned with the shear direction. For finite lattic
we sometimes observe at much later times a nucleation
complete stripes that span the system and are periodic in
shear direction. The time required to form these stripes

FIG. 2. Applying shear~with shear rateġ51) to a system with-
out internal dynamics leads to homogenization.
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pends on the system size and it seems reasonable to as
that this phenomenon does not occur in infinite systems.

We now consider a high-viscosity fluid (t15100) in
which diffusive but not hydrodynamic modes are importa
The internal dynamics leads to domain coarsening and
also prevent a complete mixing of the system. Figure
shows the spinodal decomposition pattern of the hi
viscosity binary mixture. For very short times (t,300
;ġ21) we observe the familiar spinodal decomposition p
tern. It is, however, coarsening in a new way via shear flo

FIG. 3. ~a! Spinodal decomposition under shear for a hig
viscosity binary fluid (t15100,Lx5256,Ly5128). The high-
viscosity suppresses internal hydrodynamic degrees of freed

The shear rate isġ50.004, which corresponds to a shear timets

5250. ~b! Variation of the orientation~in degrees! of the pattern
with time. ~c! Variation of the length scales~in arbitrary units! with
time.
me

.
an
3
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induced collisions of the domains. This process enhan
domains oriented in the collision direction. Then for 300,t
,1000 the flow slowly turns the striped pattern and stretc
it. At t;1000 the rupturing of domains starts to be importa
and for 1000,t,15 000 there is a continuous stretching a
rupturing that effectively stops the phase-ordering proce
At t;15 000 the system develops stripes that span the
tem. Because periodic stripes are unaffected by the s
flow if they are completely aligned with it the system no
grows via the diffusion mechanism.

This evolution can be followed more quantitatively b
measuring the orientation angle and the length scales defi
in Sec. IV. Figure 3~b! shows the angle of orientation to th
x axis measured byu! @Eq. ~36!# andu° @Eq. ~42!#. The two
different measures for the angle agree very well. The pat
tilts at very early times (t,2000) and then slowly aligns
with the direction of the shear flow as periodic stripes a
created.

The graph in Fig. 3~c! shows the length scalesR1,2
! de-

fined in Eqs.~37! and the length scalesR1,2
° defined in Eqs.

~41!. We very clearly see a separation of length scales an
good agreement of the two different measures. A minim
of the larger length scale att;17 000 indicates the creatio
of periodic stripes spanning the system. After this time
growth of domains is no longer hindered by the continu
breaking of stretched domains.

We now turn to consider a system with a lower viscos
that allows for a hydrodynamic response of the domains
the shear flow. Results are presented in Fig. 4. It is imme
ately obvious that the pattern differs from that in Fig. 3. T
final state does not simply consist of periodic stripes, but
dynamic structures that are constantly stretched, broken,
deformed by the flow. At least on this time scale a state
dynamic equilibrium is reached where the ordering effects
the spinodal decomposition balance the disordering effect
the shear.

The quantitative measures in Figs. 4~b! and 4~c! show that
after initial fluctuations the orientation of the pattern co
verges to a value that fluctuates about a finite angle to
shear direction. This phenomenon is similar to the behav
of a single sheared drop that lies at a finite angle to a sh
flow @19#. The graph of length scales again shows a v
clear distinction between the large and small length sca
Strong oscillations are seen. These may be finite size eff
because the system is so small and contains only a few
mains. However, such oscillations have been seen in exp
ments@4# and in a model system@20#.

We have, so far, considered strong shear flow. Let us n
consider the same viscosity, where both diffusive and hyd
dynamic flow is possible, but lower the shear rate so that
early-time spinodal decomposition is unaffected by the flo
In Fig. 5 the spinodal decomposition for a shear rateġ
50.0001 is shown for a system witht151. For times t

,1/ġ510 000 we see the typical spinodal decomposit
pattern for these viscosities. Hydrodynamic flow leads to c
cular domains which then grow through the slower diffusi
mechanism. After this time, the stretching of the doma
dominates over the domain growth and the pattern beco
nonisotropic. By t;10 000 the pattern comprises larg
stripelike domains together with the nested pattern of dr

-

m.
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within drops in the large domains. As the large domains
stretched, the drops inside them coalesce with the walls
slowly the stripes are cleaned of the small included drop

These results also clearly show up in the measurem
given in Fig. 5. Aftert.10 000 the orientation slowly con
verges towards a tilting angleu;7°, the long and shor
length scales split, and theR!;R°;R1;t2/3 growth law
breaks down. In theR# measure derived from the number
domains we see a slight increase from the normal growth

FIG. 4. ~a! Spinodal decomposition under shear for a mediu
viscosity binary fluid (t151,Lx5256,Ly5128). The effect of in-
ternal flow causes the domains to remain at an angle to the s

direction. The shear rate isġ50.004, which corresponds to a she
time ts5250. ~b! Variation of the orientation~in degrees! of the
pattern with time.~c! Variation of the length scales~in arbitrary
units! with time.
e
nd

ts

w

corresponding to the process of shear cleaning the str
from drops.

VI. CONCLUSIONS

In this paper we have investigated the effects of sh
flow on systems undergoing spinodal decomposition. In
der to study these systems we introduced an extension to
lattice Boltzmann algorithm that allows simulation of she
flow problems with Lees-Edwards boundary conditions. W
find that the effect of shear flow on spinodal decomposit
depends strongly on the viscosity of the fluid. Systems wit
very high viscosity tend to order in the shear directio

-

ar

FIG. 5. ~a! Spinodal decomposition under shear for a hig
viscosity binary fluid (t15100,Lx5512,Ly5512). The high vis-
cosity suppresses internal hydrodynamic degrees of freedom.

shear rate isġ50.0001, which corresponds to a shear timets

51000.~b! Variation of the orientation~in degrees! of the pattern
with time. ~c! Variation of the length scales~in arbitrary units! with
time.
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whereas systems with a lower viscosity arrive at a dyna
stationary state where the domains lie at a finite angle to
shear direction.

One of the problems in simulating spinodal decompo
tion under shear is that the shear flow induces long-ra
correlations much faster than for unsheared systems so
larger lattice sizes are required to examine long-time beh
ior. Therefore there remain many unexplored problems c
cerning the structure of spinodal decomposition under sh
For example, it would be interesting to investigate the tr
sition between the sheared and nonsheared patterns fo
ferent viscosities and to ask whether the late-time decom
sition patterns are statistically independent of an initial she

APPENDIX

We show how the full pressure tensor~15! is derived. The
pressure of a homogeneous system is defined as the vo
derivative of the free energy. Writing the full volume depe
dence of the densitiesn5N/V andw5(NA2NB)/V explic-
itly we see that

P52]VE
V
cS N

V
,
NA2NB

V D
52]VFVcS N

V
,
NA2NB

V D G
5n]nc1w]wc2c. ~A1!

For a nonhomogeneous system the pressure is no lon
scalar but a tensor. The correct form of the pressure te
can be derived from a Lagrangian expression for the f
energy which is minimized in equilibrium,
ys

ett

A

tt.

s,
ic
e
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e
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v-
n-
r.
-
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me
-
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e

L5E
V
S c~n,w!1

k

2
]aw]aw D

1mwS E
V
w2~NA2NB! D 1mnS E

V
n2ND . ~A2!

To obtain differential equations for the equilibrium w
evaluate the Euler-Lagrange equations and get

mw52]wc1k]a]aw, ~A3!

mn52]nc. ~A4!

We multiply these equations with]bw and]bn, respectively,
and sum the equations. Remembering thatmw and mn are
constants, this yields

]b~wmw1nmn!52]a@cdab1k~]aw]bw

2 1
2 ]gw]gwdab!#. ~A5!

We then substitute the expressions for the chemical po
tials ~A3! and~A6! into Eq.~A5! and subtract the right-han
side from the left-hand side to derive a tensors that has a
zero divergence,

]asab5]a@~w]wc1n]nc2c!dab1k~]aw]bw

2 1
2 ]gw]gwdab2w]g]gwdab!#. ~A6!

For a uniform systemsab5Pdab reduces to the homoge
neous pressure. The divergence of the pressure tensor
vanish in equilibrium. We therefore identifysab with the
pressure tensorPab .
tt.

ys.
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