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Phase separation under shear in two-dimensional binary fluids
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We use lattice Boltzmann simulations to study the effect of shear on the phase ordering of a two-dimensional
binary fluid. The shear is imposed by generalizing the lattice Boltzmann algorithm to include Lees-Edwards
boundary conditions. We show how the interplay between the ordering effects of the spinodal decomposition
and the disordering tendencies of the shear, which depends on the shear rate and the fluid viscosity, can lead
to a state of dynamic equilibrium where domains are continually broken up and reformed.
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I. INTRODUCTION cence of the domains, which can itself be driven by the
shear. This was proposed by Ohta, Nozaki, and [Bpion
We present numerical results for the effect of shear flonthe basis of two-dimensional simulations using a cell dy-
on the spinodal decomposition of a two-dimensional binarynamic approach. These simulations, however, did not include
fluid using lattice Boltzmann simulations. We show how thehydrodynamics.
lattice Boltzmann algorithm can be generalized to allow the = Simulations of phase separation under shear which in-
introduction of the Lees-Edwards boundary conditions,cjude hydrodynamics are limited. Olson and Rothman per-
which are commonly used in molecular dynamics simulaformed early work using lattice gas cellular automata in two
tions to impose a shear flow without introducing walls. Re-and three dimensions and were able to see the anisotropy of
sults are presented showing how the competition between thge growth[6,7]. Wu et al. undertook Langevin simulations
ordering effects of the free energy and the disordering effectf, two and three dimensions and report the eventual forma-
of the shear influences the spinodal decomposition and phasgn of a string phase in three dimensiof&]. Padilla and
ordering of the fluid. For a recent review see OnuKi Toxvaerd performed molecular dynamics simulations on a
When a binary fluid consisting of an equal amount of twotwo-dimensional Lennard-Jones system, again pointing out
componentsA andB say, is rapidly cooled below the critical the anisotropic nature of the domain groi. In the simu-
temperature it phase separates intoAarich and aB-rich  |ations a peak was seen in the excess shear viscosity as a
phase. Once well-defined domains of each phase are formggnction of time corresponding to the increase in the lengths
the typical domain size grows according to a power law  of interfaces in the system. However, there seems to be no
N evidence for a shear-induced dynamic equilibrium.
RO~ (1) Here we simulate phase separation under shear using a
lattice Boltzmann scheme in the same spirit as the model
where a is the growth exponenf2]. o depends on the introduced by Orlandini and co-workers, which imposes
growth mechanism, which is dictated by the surface tensiorphase separation by defining the fluid equilibrium as the
viscosity, and diffusivity of the fluid, and the time elapsed minimum of an input free energyl0,11]. This method has
after the quench. In two-dimensional systems diffusivebeen very successful in obtaining results for phase separation
Lifshitz-Slyozov growth givesa= 3 while hydrodynamics in the absence of sheft2]. A particular advantage of the
can lead to faster growth with=3. approach is that the fluid viscosity and diffusivity can be
The most obvious effect of shear flow on the domaintuned, and this has allowed us to compare simulations for
growth is that the growing domains are elongated in the diparameter values where diffusive or hydrodynamic phase
rection of the flow, leading to an anisotropic morphology.separation dominates. We find either phases striped in the
Experiments in three dimensions have shown that a stringshear direction, or a dynamic equilibrium where the length
like phase of thin domains oriented parallel to the shear cagcales remain approximately constant in time, depending on
be formed in strong she4B]. Such domains, which would the relative strengths of the shear and the ordering.
normally be expected to be unstable due to the Rayleigh The lattice Boltzmann approach is described in Sec. II.
instability, appear to be stabilized by the shear, although verBecause this is a lattice rather than particulate simulation
recent experiments show that they can eventually break up imethod, it is not immediately obvious how to define Lees-
strong sheaf4]. Edwards shear boundary conditions. An approach for doing
This apparent stabilization suggests the possibility of a&his is given in Sec. Ill. In particular, it is necessary to gen-
dynamic equilibrium when stretching and breaking of theeralize the normal definition of the lattice Boltzmann equi-
domains as the result of the shear is balanced by their growtlibrium distribution. In Sec. IV we define suitable measures
due to the thermodynamic driving force and to the coalesto characterize the anisotropic morphology of the spinodal
decomposition patterns when shear is applied. The results of
our simulations are contained in Sec. V, where the effect of
*Present address: MIT, Room 13-5157, 77 Massachusetts Aveshear is compared for different fluid viscosities. Section VI
Cambridge, MA 02139. Electronic address: awagner@mit.edu  summarizes the results and discusses outstanding questions.
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Il. THE LATTICE BOLTZMANN APPROACH a convection-diffusion equation governing the evolution of

The starting point for lattice Boltzmann simulatioffs3] the density difference

is the evolution equation, discrete in space and time, for a set N _

of distribution functionsf;, each associated with a velocity I+ dalPUq) = w2
vectorv;. For the sake of simplicity we consider a single

relaxation time, the so-called Bhatnagar, Gross, and Krooknd, in the incompressible limit, the incompressible Navier-
(BGK) approximation[14]. The evolution equation for the Stokes equations for a nonideal system,

e U+ NUd 2P+ 1
n tua nuB Bua— ﬁ aﬁ 3

2 ¢
rv M_&ﬁ<_aapaﬂ

At Vu,+0(d%, (11
fi(x+viAt,t+At)—fi(x,t)=7_—(fi°—fi), )
! where w; ,= 71 ,—At/2 and the viscosity is given by
wherex is a lattice point,At is the time step, and;At is =nw,/3.
normally constrained to be a lattice vector. The relaxation The thermodynamic fields entering the simulation are the
time is 7, and f? is the equilibrium distribution. For a two- pressure tensor and the chemical potential which follow from
component system a second, equivalent equation is aldghe free energy of the system. We consider the free energy of
needed, a simple binary fluidA-A andB-B interactions are zero, but
At there is anA-B repulsion\nang wheren, and ng are the
gi(x+vim,t+m)_gi(x,t):_(g?—gi)_ ©) number densities o andB particles, respectively, and is
T2 a parameter describing the interaction strength. This system

Physical quantities are defined as moments of the distribua" be described by the Landau free energy functional

tion functions. To model the isothermal flow of a binary K )
mixture of component# and B, we choose W= | drygle.n T+ 5(Ve)T, (12
2 fi=n, Z fivi=nu, E gi=o, (4)  whereT is the temperature and is a measure of the excess
| I I

interface free energgsurface tension The free energy den-

wheren is the total density fieldy is the velocity field, and S ©f the homogeneous system| ]

¢ is the field corresponding to the difference in the density of n @2
componentA andB. U(e,n,T)= e 1- -
We require mass conservation for both components and n

T+T + o)l e
n E(n <P)HT

momentum conservation for the bulk. This is equivalent to T n—g
constraining the equilibrium distributions to obey + §(n— (p)ln(T . (13
0_ 0_ 0,, —
Ei fi=n, Z gi=e Z fivi=nu. (5 For temperatures greater than a critical temperaflge

=\/2 the system remains in a single phase. FarT, there

We also need to define higher-order moments of the equiis phase separation into two states with + ¢.
librium densities. The choice for these moments is within the From the free energyl2) we derive the local chemical

free energy lattice Boltzmann scheme used h&6g11], potential u as the functional derivative of the total free en-
ergy ¥ with respect to the concentration difference field
2 70100ip= Pagt NULUg, ®  e(x),
% Ne T (n+ go)
X)= =——=—+=In —kV2p. (14
> 9Pvia= U, ) 5ot 2 2 e e
i
Equilibrium corresponds t@(¢,n,T)=0.
0 _ The derivation of the pressure tensor is slightly more in-
Viglig=T w5+ @U,Ug, 8 e X X
Ei GiviaVip=1 MOapT PUallp ® volved and is discussed in the Appendi]. We obtain
whereP,,; is the pressure tensdr, is a mobility parameter, Pap=(Nonht @ th—h) Sup

u is the chemical potential for the density difference, ahd

/ \ ifte + k(00 dp@— 30,900,080 ©3,0,¢)
is the Kronecker delta. The physical motivation for these «TTRT 2Ty Ty el YOy

constraints is twofold; first to ensure the correct form of the =[NT+ou’(x)18,s
macroscopic equations of motion and secondly to reproduce k(0 00— 08 08— 0d.d
the correct thermodynamics of the binary mixture in equilib- K(0apdp@=70,90y080p= ¢I34@)
rium as discussed in more detail below. =[nT+ _1
. : : eu(X)]80pt K(3,0dp@—730,90d,080p),
Taylor expanding the evolution equatiof® and (3) to ap aTTpT 2Ty TTyT el
second order in the derivatives gives the macroscopic equa- (15

tions of motion for the binary fluidil5]. These are the con-

S . . where the first term is the ideal gas pressure, the second term
tinuity equations for the total density, 9asp

is the osmotic pressure wim°=a¢¢, and the third term is
dn+d,nu,=0, 9 related to the surface tension. The osmotic pressure was
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omitted in the original definition of the modgl0,11. The
chemical potential and pressure tensor are input to the lattice
Boltzmann scheme through Ed$) and (8). In equilibrium
the simulated fluid minimizes the free ener@p).

It remains only to define the equilibrium distributioﬁ%
and gi0 introduced in the evolution equationf®) and (3).
Normally an expansion to second order in the velocities is
sufficient to reproduce the constrai®—(8) [13]. However,
this ceases to be the case when Lees-Edwards shear bound-
ary conditions are introduced. In the next section we discuss
how the equilibrium distribution can be defined to allow the
use of Lees-Edwards boundary conditions.

FIG. 1. Our numbering of the velocity vectors in a nine-velocity
model.

11l. SHEAR BOUNDARY CONDITIONS ) ] ]
wherel(z) is the largest integer with(z)<z andR(z)=z

Possibly the easiest way to introduce shear flow in a lat= ! (2)- If we pass the break in the lattice from the other side
tice Boltzmann simulation is to include walls moving in a We define similarly

lattice direction. Even for a wall with neutral wetting, how- f[x,y=Y+1]=[1—-R(ut)]f[x—I(ut),y=1]
ever, phase separation is strongly enhanced at the walls and
the wall effects easily dominate the phase-separation process TRUHfx=I(ut)-1y=1]. (17

for all but the largest systems. The effect of walls on phasl

separation is an interesting phenomenon in its own right, bu gﬁlssarjf)t:r:#sl,?:rn?éz ggletzzdmgﬁr dzogsii%eaﬁgismlgg c(c':;— the
it is not the process we are interested in studying here.

The problem caused by explicit walls can be overcome incuIﬁt:gnrz;Lg?r:ﬁggegg?f(:ifur:tsfo see how the Galilean trans-
a relatively simple and efficient manner by introducing a . ) : .
Klein-bottle symmetry to the lattice, i.e., introducing peri- formation should be defined. Let us consider the special case
odic boundarv conditions in one 'd.i'rectiori(x oY) of a two-dimensional, nine-velocity model where the veloci-
—(0.y) and awlvi'dnius—band—like boundary conditiSIrZ\eir): the ties are numbered as ipdicated in Fig. 1. We need to perform
other directionf(X,Ysiz9 = f(Xsize— X,0). This is done by a G"?‘"'ea” transforr_natlon on t{6,2,6, and the{7,4,8 ve-
locities as these will carry mass and momentum across the

forcmg th_e fluid to have a given velocity along one Ilne In boundaries. To define the transformation we demand mass
the direction of the shear flow. In a one-component mixture

o . . , andy-momentum conservation,
this induces a linear velocity profile. For a two-component
mixture, however, the dynamics are influenced by the np=fs+f+fe=fi+f+fg, (18
V-shaped velocity profile at the forcing line because of the
nonlocal interactions. We used this algorithm to produce pre@n appropriate change in temomentum,
Iiminary results but it has no advantages over the method (f5_f6)_(fé_fé):npul (19)
derived below.

A more regular shear flow can be produced by extendingi\nd conservation of the local pressure,
the idea of Lees-Edwards boundary conditions, widely used
in molecular dynamicg18], to lattice Boltzmann simula- p_
tions. Briefly, Lees and Edwards simulated shear boundary **
conditions for a shear in thedirection in a simulation box

f.
Z _Iz(nvix_ r]pux)z
Mo

of dimensions X,Y) by introducing periodic boundary con- 1

ditions in they direction. Particles that left the box at the = — [fs(np—npu) >+ fo(npuy) >+ fo(—np—nguy)?]

lower boundary for positionx,y=0) reappeared at the up- Mp

per boundary at positiotx+ ut(modX),y=Y) with a veloc- 1

ity thaF was changed _by—>v+u. . ' ' :—Z[fé(np—npu)’()2+fé(npu)’()z+fé(—np—npu)’()z]'
To implement this idea for lattice Boltzmann simulations ng

we are faced with two difficulties. First the densities are (20)

defined on a lattice and the Lees-Edwards boundary condi-
tions lead to densities defined between the lattice points. Segrhere the prime denotes the transformed quantities.
ondly we need to impose a Galilean transformation for the This system of equations can be solved to give a unique

densities which are streamed across the lattice. solution for the Galilean-transformed densitigs
The nonfitting of the lattice is relevant both for the , )
streaming and for the calculation of derivativesyatl and fa=fo+2(f5—fe)u—nyus, (21)
y=Y. We solve this problem by a linear interpolation 3 1 1 n
scheme. For any density we define fe=fs+| — §f5— §f2+ §f6 u+?pu2, (22
fx,y=0]=[1~R(utJf[x+1(ut),y=Y] 11 3 o,
FRUDF[XEI(U)+1y=Y], (1) fo=fet| ~3fst glatgfejut S0 (29
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This definition can be extended to a Galilean transformatioror this equilibrium distribution

for all densities and, equivalently, to a transformation in dif-

ferent lattice directions.

fo—fs T

= (30)

_ , =Uy+ ,
In order for this transformation to make sense we need to fR+13+10 7 Tyy+u+ul

make sure that Eq19) is consistent with the definition of
the equilibrium distribution;‘i0 in Eq. (2), i.e., that an equi-
librium distribution for a velocityu Galilean transformed by
a velocity Au is equal to the equilibrium distribution for
velocity u+ Au. It is conventional to define the equilibrium
distribution as a polynomial in second orderunA generic
expansion is

f9=A,n+B,nu,v;,+C,nu?

+D,NUURI Vgt Grapviglig, (24

whereA, B, ,C,,D,,G,,z are constants that have the ab-

solute value of the corresponding velocity vector |v;| as
an index. However, substituting E@®4) into Eq.(19) shows

that this equation is not satisfied in equilibrium. In practice

this leads to a step in the, profile at the boundary.

There is, however, na priori reason to use a second-
order expansion in the velocity for the equilibrium distribu-
tion. All that is needed for a valid equilibrium distribution is
that Egs.(5)—(8) hold and that the distribution obeys the
conditions(21)—(23).

Let T,z=P,g/n. Then, if we require

0 0 0 0

fo+1e—(Fe+ 13+ (Tt uu)=0, (26
fg+fg_(fg+fg+f(1))(Tyy+uyuy):O’ (27)
o= (FR+ o+ (Tt uu)=0, (28
fot f2— (fo+ 5+ 9 (T,y+uyu,)=0, (29)

Egs.(25-(29), together with Eqs(5)—(8), are a completely
determined set of equations with the solution

=n(1-T— U (1-Tyy—uj),
f=3N(Tyxt Ut ud) (1= Ty —ud),
f9=3n(Tyy+uy+ud)(1-Ty—ud),
F9=3n(Tex— U+ U (1= Tyy—u7),
yy—Uy+Ud) (1= Ty~ ud),
2= $n[ Tyy+ TauTyy+ Tyy(Ux+UZ)

fO=1n(T

+ Tux(Uy+UZ) + Uy (14 Uy +uy+uyuy) ],
= 3n[— Tyt TuxTyy+ Tyy(—Ux+U2)
+ Ty Uy U5) — Uy (1= Uy Uy — Uty )],
9= 2n[ Tyt TaxTyy+ Tyy(—Uy+Ud)
+ Ty — Uy UZ) + Uy (1= Uy — Uy + Uyliy) ],
f8=4n[— Tuy+ ToxTyy+ Tyy(Ux+U2)

2
+ Tyx( — Uy +Ug) = UyUy(1+Uy—uy—uyuy) J.

which is consistent with the Galilean transformatid®).
For a two-component system we similarly define g?e
using

9993 95— 93
0, 0,0 Y 55 5=y (3D)
01+090t 03 09,1901t 0,
and imposing
go=¢— 1T u—@(ui+ud), (32)

wherel is a free parameter that can be used to improve
stability (we choosd =1). Solving Egs.(31) and (32) and
(5)—(8) gives

=3{(I-1—uy F,u+(1+ux—uy)<pux}
=5{(I—1—uy)l“,u+(1+uy—ux)zpuy},
2{(' 1+u)lu— (l—UX—U)%)@UX},

g4=z{(l—1+uy>ru—(1—uy—u§>¢uy},

98=#{(2—1+u+u)T u+(1+u+uy) pu,uyt,
96:%{( I_ux+Uy)FM_(l_ux+uy)¢uxuy}'
99=3{(2—1—uy—uy)T +(1-uy—uy) eu,uy},

95=H{(2— 1+ U= uy)T = (14U, Uy) oy}

The macroscopic flow equations are unaffected by the choice
of the further constraint®25)—(29) and (31)—(32) or by the
detailed structure of the equilibrium distributions. Therefore,
these alterations in the model can change the numerical sta-
bility and the behavior of quantities like the spurious veloci-
ties, but they leave the evolution of the macroscopic quanti-
ties unaffected, at least to second order in the derivatives.

IV. MEASURES FOR NONISOTROPIC PATTERNS

To characterize the features of phase separation under
shear it is necessary to construct measures for the length
scales of the sheared systems which will in general be aniso-
tropic. Measures that are based on Fourier transforms cannot
be easily used for sheared systems because the system is no
longer periodic.

Length scales derived from derivatives do not require pe-
riodicity. Derivatives need to be evaluated for the algorithm
and are readily available. We define a tensor

2 (X1 age(X,)
daﬁ_ ’ (33)
g P2(x,1)

whered® is the symmetric discrete derivative in directian
Because the tensor is symmetric it can be diagonalized to
give two eigenvaluea ;,\, and an angl&*,
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:dxx+dyy+ \/(dxx_dyy)2+d2

)\l 2 4 Xy? (34)
dy,t+d (dyy—dyy)?
)= xx2 W_\/ xx4 yy +d)2<y’ (35)
d
6" =tan 1| —2— ) 36
dy—1s (36)

The two eigenvalues give two orthogonal length scales

1
Ri(t)= N(OLy Ry (1)=

NSV (37) time=4 time=>5 time=6 time=10
)\z(t)l-w .
FIG. 2. Applying sheafwith shear ratey=1) to a system with-

where L, is the interface width. It appears becausg;  out internal dynamics leads to homogenization.
scales inversely with the interface width5]. L,,, used as a
constant here, could in principle be anisotropic. That thidibrium values of the order parameter were theg=+1.
anisotropy is not a strong effect can be seen by comparinfhe mobility wasI'=2, the relaxation time for the order
these length scales with scales that are explicitly independeptarameter in Eq(3) wast,=1, and the interface free energy
of the interface width. parameter wag = 0.002, which corresponds to an interface

One such measure is related to the lengths of the intemwidth of approximately three lattice spacings. The relaxation
faces in the system. The interface can be represented by a ggirameter for the total density ER), =;, was varied:r;
of contours. These contours consist of small line segmients =100 gave a high viscosity angi=1 an intermediate vis-
and the length of the interface can be written cosity.
The shear transformatidBis defined as

L|=Ei T3 (39) X [xtty
(y) y)'

(43

In order to extract the preferred direction of the interface we

define the vector . .
efine the v Shear flow applied to a system undergoing spinodal decom-

S e position stretches the original pattern. This effect is only rel-
D=R ( 2,: R(I')) ’ (39) evant once the deformation caused by the flow is of the same
order as or larger than the deformation caused by the coars-
The operatoR is defined by ening process. This requires

cog26 :
R(i)=|>?|( g )), 40 W>1. (44)
sin(20)

We therefore expect to observe the effect of the shear flow

for t>1/y.

N i i ) To help understand the effect of shear flow on a phase-
D is a vector that is zero for isotropic closed contours andseparating system let us first consider a pattern without any

which points in the average direction of the interface forinternal dynamics that undergoes a shear transformation.

nonisotropic closed contours. Two length scales and an anglenis transformation is illustrated in Fig. 2, where we start

that correspond to the intuitive result for oriented rectangulafom a frozen spinodal decomposition pattern and show suc-

objects can be defined from these measures, cessive iterations of a shear transformation wyith 1.
3 XY . XY The structure develops an orientation that slowly aligns

where 6 is the angle between the argumentRfand thex
axis.

Ri=——=, Ry=——%, (41)  with the shear direction while the stretching increases the
L+[D] ] length of the domains along the shear. Once the width of the
AL domains is smaller than the original width of the interface

R _, XD the system is effectively a homogeneous mixture.
9°=cos B[/ (42) This effect is known as shear-induced mixing. It can be

observed in the lattice Boltzmann fluids if the stretching ef-

Thus we have defined two independent sets of measures fégct of the shear flow is much faster than the growth of the
the structure of nonisotropic patterns that will now be used t¢lomains via diffusion or flow. Numerically this can be

examine spinodal decomposition under shear. achieved by choosing a very low mobility and a high viscos-
ity. Phase separation is suppressed because of the mixing
V. SIMULATION RESULTS properties of the shear flow unless the phase-separating

structure is aligned with the shear direction. For finite lattices

For all the simulations we used a total dengity 2, an  we sometimes observe at much later times a nucleation of
interaction parameter= 1.1, which corresponds to a critical complete stripes that span the system and are periodic in the
temperaturel .= 0.55, and a temperatuie=0.5. The equi- shear direction. The time required to form these stripes de-
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induced collisions of the domains. This process enhances
domains oriented in the collision direction. Then for 300
<1000 the flow slowly turns the striped pattern and stretches
it. At t~1000 the rupturing of domains starts to be important
and for 1006<t<<15 000 there is a continuous stretching and
rupturing that effectively stops the phase-ordering process.
At t~15000 the system develops stripes that span the sys-
tem. Because periodic stripes are unaffected by the shear
flow if they are completely aligned with it the system now
grows via the diffusion mechanism.

This evolution can be followed more quantitatively by
measuring the orientation angle and the length scales defined
in Sec. IV. Figure &) shows the angle of orientation to the
x axis measured by* [Eq. (36)] and #° [Eq. (42)]. The two
different measures for the angle agree very well. The pattern
tilts at very early times (<2000) and then slowly aligns
with the direction of the shear flow as periodic stripes are
created.

The graph in Fig. &) shows the length scaleR] , de-
fined in Egs.(37) and the length scale|§°1’2 defined in Egs.
(41). We very clearly see a separation of length scales and a
good agreement of the two different measures. A minimum
of the larger length scale &t-17 000 indicates the creation
of periodic stripes spanning the system. After this time the
growth of domains is no longer hindered by the continual
breaking of stretched domains.

We now turn to consider a system with a lower viscosity
that allows for a hydrodynamic response of the domains to
the shear flow. Results are presented in Fig. 4. It is immedi-
ately obvious that the pattern differs from that in Fig. 3. The
final state does not simply consist of periodic stripes, but of
dynamic structures that are constantly stretched, broken, and
deformed by the flow. At least on this time scale a state of
dynamic equilibrium is reached where the ordering effects of
o 25 o ™ the spinodal decomposition balance the disordering effects of
¢ . Ry, w0 the shear.

The quantitative measures in Figgb¥and 4c) show that
after initial fluctuations the orientation of the pattern con-
20 verges to a value that fluctuates about a finite angle to the
0 shear direction. This phenomenon is similar to the behavior
10000 20000 30000 0 10000 20000 30000 H H H.

time time of a single sheared drop that lies at a finite angle to a shear

(b) (c) flow [1_9]._ Th_e graph of length scales again shows a very
FIG. 3. (a Spinodal decomposition under shear for a high- clear d|st|n_ct|o_n between the large and smal_l !eng_th scales.
viscosii .binar fluid 6, 100L,—256L,~128). The high- Strong oscillations are seen. These may bg finite size effects
y y ! X y ' 9 because the system is so small and contains only a few do-

viscosity suppresses internal hydrodynamic degrees of freedom. P - .
. , ) mains. However, such oscillations have been seen in experi-
The shear rate i=0.004, which corresponds to a shear titge

- " . -~ ments[4] and in a model systeif20].

_.250.' () Varlatl_on_ of the orientatior(in o_legreg}: of the_ patt_ern We have, so far, considered strong shear flow. Let us now

with time. (c) Variation of the length scalg@ arbitrary unit$ with . X . ) .

time. conS|d(_ar the same V|_sc03|ty, where both diffusive and hydro-
dynamic flow is possible, but lower the shear rate so that the

pends on the system size and it seems reasonable to assufi@ély-time spinodal decomposition is unaffected by the flow.
that this phenomenon does not occur in infinite systems. In Fig. 5 the spinodal decomposition for a shear rate
We now consider a high-viscosity fluidr{=100) in  =0.0001 is shown for a system withy=1. For timest

which diffusive but not hydrodynamic modes are important.<1/,=10000 we see the typical spinodal decomposition
The internal dynamics leads to domain coarsening and capattern for these viscosities. Hydrodynamic flow leads to cir-
also prevent a complete mixing of the system. Figure Zylar domains which then grow through the slower diffusive
shows the spinodal decomposition pattern of the highmechanism. After this time, the stretching of the domains
viscosity binary mixture. For very short times<(300  dominates over the domain growth and the pattern becomes
~ v~ 1) we observe the familiar spinodal decomposition pat-nonisotropic. By t~10000 the pattern comprises large
tern. It is, however, coarsening in a new way via shear flowstripelike domains together with the nested pattern of drops
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15060 20060 30000 40000 5350 30500 35505 To50 FIG. 5. (a) Spinodal decomposition under shear for a high-
time time viscosity binary fluid ¢;=100L,=512].,=512). The high vis-
(b) (c) cosity suppresses internal hydrodynamic degrees of freedom. The
FIG. 4. (a) Spinodal decomposition under shear for a medium-Shear rate isy=0.0001, which corresponds to a shear time
viscosity binary fluid ¢;=1.,=256L,=128). The effect of in- =1000. (b) Variation of the orientatioriin degreey of the pattern

ternal flow causes the domains to remain at an angle to the she}fith time. (c) Variation of the length scaleén arbitrary unitg with

direction. The shear rate ig=0.004, which corresponds to a shear tme.
time t;=250. (b) Variation of the orientation(in degrees of the . . .
pattern with time.(c) Variation of the length scale6n arbitrary corresponding to the process of shear cleaning the stripes

units) with time. from drops.

within drops in the large domains. As the large domains are V1. CONCLUSIONS

Slole the StripeS are cleaned of the small included drOpS. ﬂOW on Systems undergoing Spinoda| decomposition_ In or-
These results also clearly show up in the measurementer to study these systems we introduced an extension to the
given in Fig. 5. Aftert>10000 the orientation slowly con- [attice Boltzmann algorithm that allows simulation of shear
verges towards a tilting anglé~7°, the long and short flow problems with Lees-Edwards boundary conditions. We
length scales split, and thR*~R°~R~t%3 growth law find that the effect of shear flow on spinodal decomposition
breaks down. In th&®# measure derived from the number of depends strongly on the viscosity of the fluid. Systems with a
domains we see a slight increase from the normal growth lawery high viscosity tend to order in the shear direction,
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whereas systems with a lower viscosity arrive at a dynamic K

stationary state where the domains lie at a finite angle to the L=f (w(n,<p)+ E%WM)

shear direction. v
One of the problems in simulating spinodal decomposi-

tion under shear is that the shear flow induces long-range 1 J n—N). (A2)

correlations much faster than for unsheared systems so that v

larger lattice sizes are required to examine long-time behav- . . . . A

ior. Therefore there remain many unexplored problems con-—r0 obtain differential equations f_or the equilibrium we

cerning the structure of spinodal decomposition under sheaﬁvaluate the Euler-Lagrange equations and get

+un

fV(P_(NA_NB)

For example, it would be interesting to investigate the tran- o= —Oth+ KDy 4@ (A3)
. . (0] @ ava%¥

sition between the sheared and nonsheared patterns for dif-

ferent viscosities and to ask whether the late-time decompo- Mn=—nip. (A4)

sition patterns are statistically independent of an initial shear.
We multiply these equations withye anddgn, respectively,
APPENDIX and sum the equations. Remembering thatand w, are

. . constants, this yields
We show how the full pressure tengdb) is derived. The y

pressure of a homogeneous system is defined as the volume p(@uetNun)=—0d[¥0,5+ k(I0pdpgep
derivative of the free energy. Writing the full volume depen- N
dence of the densities=N/V and ¢=(N,—Ng)/V explic- —29,99yPSap)]- (AS)

ity we see that . . .
We then substitute the expressions for the chemical poten-

P=—_g f (E Na— NB) tials (A3) and(A6) into Eq.(A5) and subtract the right-hand
VIVAIVT v side from the left-hand side to derive a tengothat has a
zero divergence,

N N,—Ng
:—(9\/ V(ﬂ v’ V &aa-aﬁ:&a[(goﬁtp‘//—i_ nanlzb_ ¢)6Qﬁ+ K((?agoaﬁgo
=Ndny+ @i h— . (A1) - %‘97"0‘974’ Sap— @Iy, 8ap) |- (A6)

For a nonhomogeneous system the pressure is no longef@r a uniform systemr,;=PJ,; reduces to the homoge-
scalar but a tensor. The correct form of the pressure tensaeous pressure. The divergence of the pressure tensor must
can be derived from a Lagrangian expression for the fre¢anish in equilibrium. We therefore identify,; with the

energy which is minimized in equilibrium, pressure tensdp, .
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